CATALYTIC SYNTHESIS OF 2-ALKYLBENZOXAZOLES

N. S. Kozlov and B. I. Kiselev

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 2, No. 3, pp. 345-347, 1966

A method of synthesizing 2-alkylbenzoxazoles, by reacting o-nitrophenol with aliphatic alcohols over a copper-alumina catalyst, has been devised. The IR spectra of the compounds prepared have been measured, and the results are interpreted.

2-Alkylbenzoxazoles are mainly prepared from o-aminophenol, and acids [1], amides [2], nitriles [3], acid anhydrides [4], and amidines [5] are condensed with the latter. A method described by us [6] makes it possible to synthesize such compounds in one stage directly from nitro compounds. The present paper gives the results of a study of the catalytic reaction of o-nitrophenol with various aliphatic alcohols (methyl to decyl inclusive) over a copper-alumina catalyst. The probable course of the reaction is:

Oxidation-reduction on the catalyst leads to conversion of the o-nitrophenol to o-aminophenol, while the alcohol forms the aldehyde. These products then condense together to give an azomethine, oxidized by excess o-nitrophenol to the 2-alkylbenzosazole (table).

IR spectrum of 2-n-butylbenzosazole.

The IR spectra of all the compounds were determined. A strong band at 746 cm⁻¹ corresponds to benzosazole, which can be regarded as an o-disubstituted benzene. The absence of absorption frequencies in the range 4000–3100 cm⁻¹, which a free hydroxyl or primary amine group would have occasioned, indicates that the o-disubstituted compound has cyclized. The 1246 cm⁻¹ absorption band indicates the presence of ether-type oxygen. The 2960–2800 cm⁻¹ region absorption band is considerably increased in intensity by increasing the number of methylene groups, confirming the structure of the compounds. An absorption band frequency 1375 cm⁻¹ corresponding to deformation vibrations of a symmetric Me group in unbranched compounds, is doubled with compounds having an iso structure $(i-C_3H_7m \ i-C_4H_9)$, forming a doublet consisting of two bands of approximately equal intensity. It is difficult to come to any conclusion regarding the presence of a frequency corresponding to the -C=N- group, since -C=N- is conjugated with -C=C-, and the frequencies of the two groups are very close together. Consequently, one can speak only of the frequencies of the benzoxazole group as a whole. A 1477-1440 cm⁻¹ band is characteristic of all the benzox-azole derivatives. Further, in the case of benzoxazole itself, a 1600 cm⁻¹ band is found. Replacement of a hydrogen at position 2 by an alkyl group leads to splitting of the band into two: 1616 and 1575 cm⁻¹. The figure gives one of the spectra.

The spectra were observed with an IKS -14 spectrophotometer using NaCl and LiF prisms, layer thickness 0.04 mm. We wish to thank M. S. Gaisinovich for determining the IR spectra.

Alkyl	Bp, °C (pressure mm)	d ²⁰ 4	n20 D	MR _D			N, %			xr(11
				Found	Calcu- lated	Formula	Fo	und	Calcu- lated	Y1el d, ∥₀
н	180—182 (760) ⁸ * mp 31°				_	C7H5NO	11.79,	11.82	11.76	20
CH₅	201 (760) ⁴	1.12	1.5531	37.984	37.662	C ₈ H ₇ NO	10.49,	10,51	10.52	31
C_2H_5	98-99 (10) ¹	1.0879	1.5420	41.881	42.280	C9H9NO	9.60	9.58	9.52	34
<i>n</i> -C ₃ H ₇	116—118 (10)	1.066	1.5338	46.819	46.898	$C_{10}H_{11}NO$	8.52,	8.59	8.69	69
i-C ₃ H ₇	109—111 (10)	1.0799	1.5391	46.682	46.898	$C_{10}H_{11}NO$	8.60,	8.62	8.69	32
<i>n</i> -C ₄ H ₉	133—135 (10)	1.042	1.5271	51.514	51.516	$C_{11}H_{13}NO$	8.10,	8.15	8.00	21
i-C₄H ₉	120-122 (10) ²	1.028	1.5090	51.060	51.516	C ₁₁ H ₁₃ NO	8.00,	8.08	8.00	15
$C_{5}H_{11}$	145-147 (10) ⁱ	1.0072	1.5173	56.310	56.134	C ₁₂ H ₁₅ NO	7.36,	7.34	7.40	30
C ₆ H ₁₃	164 - 165 (10) ¹	0.983	1.5000	60.298	60.752	C ₁₃ H ₁₇ NO	6.72,	6.75	6.89	25
°C7H15	176-178 (10) ¹	0.943	1.4818	65.310	65.370	C₁₄H₁9NO	6.50,	6.52	6.45	30
C_8H_{17} C_9H_{19}	mp 26° mp				_	C ₁₅ H ₂₁ NO C ₁₆ H ₂₃ NO	6.10, 5.80,	6.12 5.78	6.06 5.71	27 20
	22—23°									

2-Alkylbenzoxazoles

*The superscript numbers refer to the references at the end of the article.

Experimental

The catalyst was prepared by coprecipitation of the hydroxides, using 10% alkali, from a solution containing Cu and Al nitrates, the alkali being added until the solution was slightly alkaline to phenophthalein. The catalyst was worked up as previously described [7]. As ready for use it contained 30% Cu and 70% Al₂O₃.

<u>2-Alkylbenzoxazoles (table)</u>. The reactor tube contained 30 g catalyst, and 0.1 mole o-nitrophenol and 0.3 mole of the appropriate alcohol was passed over it after first being preheated, feed rate 20 g/hr, reaction temperature $300^{\circ}-310^{\circ}$ C. The catalyzate was first distilled to obtain unreacted alcohol and the ether. The residue was treated with alkali to remove phenols, washed with water, then dried over MgSO₄. Next, it was distilled under reduced pressure. The yield of product obtained by distillation was calculated on a basis of the o-nitrophenol taken.

For determining the IR spectra, the compounds were further purified by boiling them in ethanol solution with alumina. Solids were repeatedly recrystallized from petrol ether. From the 2-alkylbenzoxazoles were prepared either picrates (in the cases of 2-methyl- and 2-ethylbenzoxazole), or the quaternary ethiodides, (in the cases of the other compounds), which gave undepressed mixed melting points with the same derivatives prepared as described in [1].

REFERENCES

1. W. G. Bywater, W. R. Coleman, O. Kamm, and H. Merritt, J. Am. Chem. Soc., 67, 905, 1945.

- 2. S. Skraup, Lieb. Ann., 419, 80, 1919.
- 3. E. L. Hölljes and E. C. Wagner, J. Org. Chem., 9, 31, 1944.
- 4. A. Ladenburg, Ber., 9, 1574, 1876.
- 5. E. C. Wagner, J. Org. Chem., 5, 133, 1940.
- 6. N. S. Kozlov, B. I. Kiselev, and V. Sh. Pasternak, ZhOKh, 34, 2811, 1964.

7. B. A. Bolotnikov, V. A. Komarov, and T. V. Nizovkina, Practical Methods of Organic Catalysis [in Russian], Leningrad, 147, 1959.

8. Bamberger, Ber., 33, 2051, 1903.